Pular para o conteúdo principal

       NÚMERO QUÂNTICO DO INFINITO-DIMENSIONAL  GRACELI.

ONDE TODA PARTE ÍNFIMA E INFINITÉSIMA DE ENERGIA POSSA SER REPRESNTADA DENTRO DE QUALQUER TIPO DE ÁTOMO, OU ESTRUTURA EM QUE SE ENCONTRE DENTRO DO SISTEMA INFINITO-DIMENSIONAL GRACELI.

OU SEJA, ONDE ENVOLVE TENSORES DE GRACELI, SDCTIE GRACELI, E O INFINITO-DIMENSIONAL .



TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

 sistema indeterminístico Graceli ;

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




 SISTEMA GRACELI INFINITO-DIMENSIONAL.


COM  ELEMENTOS DO SISTEMA SDCTIE GRACELI, TENSOR G+ GRACELI CAMPOS E ENERGIA, E ENERGIA, E CONFIGURAÇÕES ELETRÔNICAS DOS ELEMENTOS QUÍMICO, E OUTRAS ESTRUTURAS.

ESTADO E NÚMERO QUÂNTICO, NÍVEIS DE ENERGIA DO ÁTOMO, FREQUÊNCIA. E OUTROS.


  TENSOR G+ GRACELI, SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO  E ESPECÍFICO NÍVEL DE ENERGIA.



SISTEMA MULTIDIMENSIONAL  GRACELI

ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.


Configuração eletrônica dos elementos químicos. [parte do sistema Graceli infinito-dimensional].


DENTRO DE UMA CONCEPÇÃO QUE CADA ÁTOMO É FORMADO DE INFINITAs OUTRAS PARTÍCULAS, E COM INFINITAS OUTRAS ENERGIAS, INTERAÇÕES, TRANSFORMAÇÕES, E OUTROS FENÔMENOS, LOGO SE TEM EM CADA ÁTOMO E OU ELEMENTO QUÍMICO INFINITAS OUTRAS DIMENSÕES. COM INFINITAS VARIAÇÕES NAS CATEGORIAS DE GRACELI , QUE  SÃO: OS POTENCIAIS, TIPOS, NÍVEIS, E TEMPO DE AÇÃO ESPECÍFICO  DO FENÔMENO.

ONDE NOS SISTEMAS  DE GRACELI CATEGORIAS,  FENÔMENOS, ESTADOS, ENERGIAS, ESTRUTURAS, E OUTROS SÃO TIPOS E FORMAS DE DIMENSÕES..


FLUXOS ALEATÓRIOS DE ENERGIAS ELÉTRICA,  E FLUXOS DE SALTOS QUÂNTICOS INFINITESIMAIS E INDETERMINADOS.
SENDO QUE VARIAM CONFORME O SISTEMA INFINITO-DIMENSIONAL.


O SISTEMA INFINITO-DIMENSIONAL DE GRACELI, ASSIM, COMO O SISTEMA SDCTIE GRACELI [SISTEMA ENVOLVENDO DIMENSÕES DE GRACELI, E SUAS CATEGORIAS, ESTADOS FÍSICOS E ESTADOS FÍSICOS DE GRACELI, TRANSFORMAÇÕES E INTERAÇÕES], E OS TENSORES DE GRACELI TEM AÇÃO EM TODA A FÍSICA EM TODOS OS SEUS RAMOS E E DIVISÕES, ASSIM, COMO A QUÍMICA E A BIOLOGIA, QUE TODOS ESTES SE FUNDAMENTEM EM ENERGIAS, ONDAS, ESTRUTURAS, CATEGORIAS, ESTADOS, ESPECTROS, DIMENSÕES, E OUTROS.

OU SEJA, DENTRO DE UM SISTEMA GERAL DE GRACELI TODA FÍSICA DAS ESTRTURUAS, ENERGIAS, ONDAS, DIMENSÕES, ESTADOS, E CATEGORIAS. ESTÃO INSERIDOS NESTES SISTEMA DE GRACELI.

dentro de uma concepção que a matéria é infinitésima em termos de tipos e ínfimos diâmetro, logo esta diferenciação faz com que cada ínfima e infinitésima parte tenha ações, transformações, interaçõs, potenciaidades, e outros diferentes de uma das outras. logo se tem infinitas dimensões para cada ínfima e infinitésima parte e tipo.



VEJAMOS;



Na mecânica quântica, o teorema de Hellmann – Feynman relaciona a derivada da energia total em relação a um parâmetro, ao valor esperado da derivada do Hamiltoniano em relação a esse mesmo parâmetro. De acordo com o teorema, uma vez que a distribuição espacial dos elétrons tenha sido determinada resolvendo a equação de Schrödinger, todas as forças no sistema podem ser calculadas usando a eletrostática clássica .

O teorema foi provado de forma independente por muitos autores, incluindo Paul Güttinger (1932),[1] Wolfgang Pauli (1933),[2] Hans Hellmann (1937) [3] e Richard Feynman (1939).[4]

O teorema afirma

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Onde

  •  é um operador hamiltoniano, dependendo de um parâmetro contínuo  ,
  • , é um estado próprio (auto função) do Hamiltoniano, dependendo implicitamente de  ,
  •  é a energia (autovalor) do estado , ie  .
  • ///////////////

    TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

    sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Prova

Essa prova do teorema de Hellmann – Feynman exige que a função de onda seja uma função própria do Hamiltoniano em consideração; no entanto, também se pode provar de maneira mais geral que o teorema se aplica a funções de onda sem função própria que são estacionárias (derivada parcial é zero) para todas as variáveis relevantes (como rotações orbitais). A função de onda Hartree – Fock é um exemplo importante de uma função própria aproximada que ainda satisfaz o teorema de Hellmann – Feynman. Um exemplo notável de onde a Hellmann – Feynman não é aplicável é, por exemplo, a teoria de perturbações de Møller – Plesset de ordem finita, que não é variacional.[5]

A prova também emprega uma identidade de funções de onda normalizadas   - que as derivadas da sobreposição de uma função de onda com ela mesma devem ser zero. Usando a notação de braçadeira de Dirac, essas duas condições são escritas como

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

A prova então segue através da aplicação da regra do produto derivado ao valor esperado do Hamiltoniano visto como uma função de λ:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Prova alternativa

O teorema de Hellmann-Feynman é na realidade uma consequência direta e, em certa medida trivial, do princípio variacional (o princípio variacional de Rayleigh-Ritz ) do qual a equação de Schrödinger pode ser derivada. É por isso que o teorema de Hellmann-Feynman vale para funções de onda (como a função de onda Hartree-Fock) que, embora não sejam funções próprias do Hamiltoniano, derivam de um princípio variacional. É também por isso que ela se aplica, por exemplo, na teoria funcional da densidade, que não é baseada na função de onda e para a qual a derivação padrão não se aplica.

De acordo com o princípio variacional de Rayleigh-Ritz, as funções próprias da equação de Schrödinger são pontos estacionários do funcional (que denominamos Schrödinger funcional por questões de concisão):

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Os autovalores são os valores que a funcional Schrödinger assume nos pontos estacionários:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

 

 

 

 

(3)

Onde  satisfaz a condição variacional:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Vamos diferenciar a Eq. (3) usando a regra da cadeia :

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Devido à condição variacional, a Eq. (4), o segundo termo na Eq. (5) desaparece. Em uma frase, o teorema de Hellmann – Feynman afirma que a derivada dos valores estacionários de uma função (al) em relação a um parâmetro do qual ela pode depender pode ser computada apenas a partir da dependência explícita, desconsiderando a implícita . Devido ao fato de que o funcional de Schrödinger só pode depender explicitamente de um parâmetro externo através da equação Hamiltoniana. (1) segue trivialmente.

Aplicações de exemplo

Forças moleculares

Quando se trata de aplicações, a mais comum do teorema em questão é o cálculo de forças intramoleculares em moléculas. Isso permite que sejam feitos muitos cálculos degeometrias de equilíbrio - as coordenadas nucleares onde essas forças que atuam sobre os núcleos (que é devido aos elétrons e outros núcleos) desaparecem.

O parâmetro λ corresponde às coordenadas dos núcleos. Para uma molécula com 1 ≤ i ≤ N elétrons com coordenadas { r i } e 1 ≤ α ≤ M núcleos, cada um localizado em um ponto especificado { R α = { X αY αZ α )} e com carga nuclear Z α, o núcleo Hamiltoniano preso é

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

O componente x da força que atua em um determinado núcleo é igual ao negativo da derivada da energia total em relação a essa coordenada. Empregar o teorema de Hellmann – Feynman é igual a

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Apenas dois componentes do Hamiltoniano contribuem para a derivada requerida   - os termos elétron-núcleo e núcleo-núcleo. Diferenciando os rendimentos hamiltonianos [6]

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

A inserção disso no teorema de Hellmann – Feynman retorna o componente x da força no núcleo dado em termos de densidade eletrônica ( ρ ( r )) e as coordenadas atômicas e cargas nucleares:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Valores de expectativa

Uma abordagem alternativa para aplicar o teorema de Hellmann – Feynman é promover um parâmetro fixo ou discreto que pareça em um hamiltoniano uma variável contínua apenas com o objetivo matemático de obter uma derivada. Os parâmetros possíveis são constantes físicas ou números quânticos discretos. Como exemplo, a equação radial de Schrödinger para um átomo do tipo hidrogênio é

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

que depende do número quântico azimutal discreto l . Promover l como um parâmetro contínuo permite que a derivada do Hamiltoniano seja tomada:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

O teorema de Hellmann – Feynman permite a determinação do valor esperado de  para átomos do tipo hidrogênio:[7]

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Forças de Van der Waals

No final do artigo de Feynman, ele afirma que " as forças de Van der Waals também podem ser interpretadas como decorrentes de distribuições de carga com maior concentração entre os núcleos. A teoria Schrödinger perturbação por dois átomos que interagem com uma separação de R, grande em comparação com os raios dos átomos, conduz ao resultado de que a distribuição de carga de cada uma é distorcida de simetria central, um momento dipolar de ordem 1/R7 ser induzida em cada átomo. A distribuição de carga negativa de cada átomo tem seu centro de gravidade movido levemente em direção ao outro. Não é a interação desses dipolos que leva a força de van der Waals das, mas sim a atração de cada núcleo para a distribuição de carga distorcida de seus próprios elétrons que dá a atraente 1/R7 força ".

Teorema de Hellmann – Feynman para funções de onda dependentes do tempo

Para uma função de onda geral dependente do tempo que satisfaça a equação de Schrödinger dependente do tempo, o teorema de Hellmann – Feynman não é válido. No entanto, a seguinte identidade é válida:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Para

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Prova

A prova baseia-se apenas na equação de Schrödinger e no pressuposto de que derivadas parciais em relação a λ e t podem ser trocadas.

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL






Em mecânica quântica, o teorema de Landau–Yang,[original 1] [original 2] é uma regra de seleção para partículas que decaem em dois fótons.

Teorema

Resultado principal

Uma partícula massiva de spin 1 não pode decair para dois fótons.

Hipóteses

Fótons aqui representam qualquer partícula de spin 1, sem massa e sem graus de liberdade internos. Contudo, o fóton é a única partícula que se conhece com essas propriedades.

Consequências

O teorema tem várias consequências em física de partículas, por exemplo

  • méson ρ não decai para dois fótons, diferente do píon neutro, que quase sempre decai nesse estado final (98,8% das vezes).[1]
  • bóson Z não decai para dois fótons. O termo clássico não existe na lagrangeana devido à invariância de gauge, mas o teorema garante que a matriz S do decaimento é zero mesmo considerando loops quânticos.
  • bóson de Higgs, cujo spin nunca fora medido, mas cujo decaimento para dois fótons foi observado recentemente,[2] [3] não pode ter spin 1.

Demonstração

Considere o referencial em que a partícula instável está parada e que os fótons decaem na direção . Nessa configuração, o momento angular orbital dos produtos de decaimento terá sempre projeção do momento angular orbital . Esse resultado é imediato já que  e o momento dos fótons está na direção .

A projeção do momento angular de spin do sistema de dois fótons tem dois valores possíveis. Ela pode ser  (em unidades de , o que será sempre assumido daqui para frente) ou . Como a parte orbital não pode contribuir com momento angular nessa direção, é impossível usar as combinações com  para formar um estado inicial com . As combinações com projeção zero são convenientemente escolhidas como simétricas ou anti-simétricas por troca de partículas:

O estado anti-simétrico por troca dos dois fótons idênticos exige, pelo teorema de spin-estatística, que a função de onda orbital seja também anti-simétrica e, logo, com momento angular ímpar. Como a helicidade apenas diz como o sistema se transforma por rotações em torno do eixo , não é possível identificar o estado final com um único spin. Contudo, devido ao comportamento por rotações em torno do eixo  e por ser anti-simétrico por troca de partículas, sabe-se que o estado é exclusivamente decomposto naqueles com  ímpar e .

Para formar um estado inicial com , precisa-se então combinar cada estado acima com o momento angular orbital tal que . Contudo, é impossível esse usar esses estados já que o coeficiente de Clebsch–Gordan[4] para:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

é nulo para qualquer  e eles não contribuem para um estado com . Na verdade, esse resultado é válido para qualquer  ímpar e pode-se tornar o teorema um pouco mais forte: o decaimento para dois fótons de uma partícula com spin ímpar e com auto-valor  por paridade, através de uma interação que preserve paridade, é sempre impossível.

A igualdade acima pode ser imediatamente verificada usando a propriedade de simetria dos coeficientes de Clebsch–Gordan[5]:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

O estado simétrico também não identificável com uma única representação massiva. Contudo, devido ao seu comportamento por troca de partículas e por rotações em torno do eixo , ele só pode ser decomposto em representações com  par e  o que, pelo teorema de spin-estatística, implica que o momento angular orbital tem que ser par, limitando-o então ao caso . Igual ao caso acima, isso implica que o coeficiente de Clebsch–Gordan é zero. Entretanto, diferente do caso acima, para spins maiores 2, pode-se usar as componentes com projeção  e não há uma regra de seleção adicional em decaimentos que preservem paridade.

Para campos com graus de liberdade internos, como glúons, pode-se ter, por exemplo,  e a função de onda de cor também anti-simétrica (por exemplo, nas representações ), contornando a demonstração do teorema. No decaimento para campos massivos, a projeção com , para a qual o coeficiente de Clebsch–Gordan não é nulo, é possível e novamente se contorna a demonstração do teorema.

Demonstração alternativa

Uma demonstração alternativa, que não faz tanto uso direto da álgebra de momento angular na mecânica quântica, é dada pela construção explícita da amplitude invariante. No gauge de Coulomb, a amplitude invariante deve ser um escalar rotacional construído com os vetores  (momento dos fótons, vetor de spin da partícula instável e polarizações dos fótons). Tanto os vetores de spin quanto as polarizações são normalizados  e, pela condição de gauge, . Além disso, amplitude deve ser linear em cada um dos . Só há três combinações que satisfazem essas condições:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Onde o primeiro termo é par por paridade e os dois últimos ímpares. Contudo, os três termos acima são anti-simétricos por troca  e , violando o teorema de spin-estatística. No caso em que momento angular é conservado, mas a estatística de Bose não é obedecida, os três termos acima são possíveis e usados em procura por violações dessa estatística.[6]





teorema de Ehrenfest, nomeado a partir de Paul Ehrenfest, físico e matemático austríaco, relaciona a derivada do tempo do valor esperado para um operador na mecânica quântica para o comutador deste operador com o hamiltoniano do sistema. Isto é:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde A é algum operador da mecânica quântica e  é seu valor esperado.

O Teorema de Ehrenfest é obviamente a Representação de Heisenberg da mecânica quântica, onde isto é apenas o valor esperado do momento da Equação de Heisenberg.

O teorema também é altamente relacionado com o Teorema de Liouville da mecânica hamiltoniana, que envolve os Parênteses de Poisson ao invés do comutador.

Derivação

Suponha que o sistema seja apresentado em um estado quântico . Se nós quisermos saber a derivada do tempo instantânea do valor esperado de A, que é, por definição:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde nós temos integrando por todo espaço. Se nós aplicarmos a Equação de Schrödinger, encontraremos isto:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

e isto:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Perceba que  porque o Hamiltoniano é um operador autoadjunto. Colocando isto na equação acima nós obteremos:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Diversas vezes (mas não sempre) o operador A é independente do tempo, então sua derivada será zero e nós poderemos ignorar o último termo da equação.

Exemplo geral

Pelo exemplo mais geral possível de uma partícula de grande massa se movendo em um vetor potencial, o Hamiltoniano é simplesmente:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde  é simplesmente a localização da partícula. Suponha que nós quiséssemos saber a mudança instantânea do momento . Utilizando o teorema de Ehrenfest, teremos:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

já que o operador  comuta com ele mesmo e não obtém dependência com o tempo. Expandindo o lado direito da equação, substituindo p por , nós obteremos:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Após adicionar a regra do produto ao segundo termo, teremos:

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

mas nós reconheceremos isto como a segunda lei de Newton.

Similarmente nós poderemos obter a mudança de posição instantânea do valor esperado.

///////////////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Este resultado é novamente em acordo com a equação clássica.

Comentários

Postagens mais visitadas deste blog